Reduced Gröbner Bases in Polynomial Rings over a Polynomial Ring
نویسنده
چکیده
We define reduced Gröbner bases in polynomial rings over a polynomial ring and introduce an algorithm for computing them. There exist some algorithms for computing Gröbner bases in polynomial rings over a polynomial ring. However, we cannot obtain the reduced Gröbner bases by these algorithms. In this paper we propose a new notion of reduced Gröbner bases in polynomial rings over a polynomial ring and we show that every ideal has a unique reduced gröbner basis.
منابع مشابه
Comprehensive Gröbner bases and von Neumann regular rings
There is a close relation between comprehensive Gröbner bases and non-parametric Gröbner bases over commutative von Neumann regular rings. By this relation, Gröbner bases over a commutative von Neumann regular ring can be viewed as an alternative to comprehensive Gröbner bases. (Therefore, this Gröbner basis is called an “alternative comprehensive Gröbner basis (ACGB)”.) In the first part of th...
متن کاملMacaulay-Buchberger Basis Theorem for Residue Class Polynomial Rings with Torsion and Border Bases over Rings
In this paper we generalize the Macaulay-Buchberger basis theorem to the case, where the residue class polynomial ring over a Noetherian ring is not necessarily a free module. Recently, this theorem has been extended from polynomial rings over fields to rings, when residue class polynomial ring is free in (Francis & Dukkipati, 2014). As an application of this generalization we develop a theory ...
متن کاملNon-commutative reduction rings
Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Gröbner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitel...
متن کاملGeneralized Discrete Comprehensive Gröbner Bases
We showed special types of comprehensive Gröbner bases can be defined and calculated as the applications of Gröbner bases in polynomial rings over commutative Von Neumann regular rings in [5] and [6]. We called them discrete comprehensive Gröbner bases, since there is a strict restriction on specialization of parameters, that is parameters can take values only 0 and 1. In this paper, we show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics in Computer Science
دوره 2 شماره
صفحات -
تاریخ انتشار 2009